Theta Dynamics Reveal Domain-specific Control over Stimulus and Response Conflict
نویسندگان
چکیده
Cognitive control allows us to adjust to environmental changes. The medial frontal cortex (MFC) is thought to detect conflicts and recruit additional resources from other brain areas including the lateral prefrontal cortices. Here we investigated how the MFC acts in concert with visual, motor, and lateral prefrontal cortices to support adaptations of goal-directed behavior. Physiologically, these interactions may occur through local and long-range synchronized oscillation dynamics, particularly in the theta range (4-8 Hz). A speeded flanker task allowed us to investigate conflict-type-specific control networks for perceptual and response conflicts. Theta power over MFC was sensitive to both perceptual and response conflict. Interareal theta phase synchrony, however, indicated a selective enhancement specific for response conflicts between MFC and left frontal cortex as well as between MFC and the presumed motor cortex contralateral to the response hand. These findings suggest that MFC theta-band activity is both generally involved in conflict processing and specifically involved in linking a neural network controlling response conflict.
منابع مشابه
Electrophysiological dynamics reveal distinct processing of stimulus-stimulus and stimulus-response conflicts.
The present study examined electroencephalogram profiles on a novel stimulus-response compatibility (SRC) task in order to elucidate the distinct brain mechanisms of stimulus-stimulus (S-S) and stimulus-response (S-R) conflict processing. The results showed that the SRC effects on reaction times (RTs) and N2 amplitudes were additive when both S-S and S-R conflicts existed. We also observed that...
متن کاملFrequency Band-Specific Electrical Brain Stimulation Modulates Cognitive Control Processes
A large body of findings has tied midfrontal theta-band (4-8 Hz) oscillatory activity to adaptive control mechanisms during response conflict. Thus far, this evidence has been correlational. To evaluate whether theta oscillations are causally involved in conflict processing, we applied transcranial alternating current stimulation (tACS) in the theta band to a midfrontal scalp region, while huma...
متن کاملMidfrontal conflict-related theta-band power reflects neural oscillations that predict behavior.
Action monitoring and conflict resolution require the rapid and flexible coordination of activity in multiple brain regions. Oscillatory neural population activity may be a key physiological mechanism underlying such rapid and flexible network coordination. EEG power modulations of theta-band (4-8 Hz) activity over the human midfrontal cortex during response conflict have been proposed to refle...
متن کاملEEG Source Reconstruction Reveals Frontal-Parietal Dynamics of Spatial Conflict Processing
Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between s...
متن کامل(No) time for control: Frontal theta dynamics reveal the cost of temporally guided conflict anticipation
During situations of response conflict, cognitive control is characterized by prefrontal theta-band (3- to 8-Hz) activity. It has been shown that cognitive control can be triggered proactively by contextual cues that predict conflict. Here, we investigated whether a pretrial preparation interval could serve as such a cue. This would show that the temporal contingencies embedded in the task can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cognitive neuroscience
دوره 24 5 شماره
صفحات -
تاریخ انتشار 2012